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Stochastic topology

“I predict a new subject of statistical topology. Rather than count
the number of holes, Betti numbers, etc., one will be more
interested in the distribution of such objects on noncompact
manifolds as one goes out to infinity,” Isadore Singer.



Random graphs



Erdős-Rényi



Erdős-Rényi random graph model

G (n, p) is the probability space of graphs on vertex set
[n] = {1, ...n} with the probability of each edge p independently.

G ⇠ G (n, p) is a draw of a graph G from the graph distribution.

Consider p(n) and n ! 1 and ask questions about thresholds of
graph properties.
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Erdős-Rényi theorem

Theorem (Erdős-Rényi)

Let ✏ > 0 be fixed and G ⇠ G (n, p). Then

IP[G is connected ] �!
⇢

1 : p � (1 + ✏) log n/n
0 : p  (1 + ✏) log n/n.

Theorem (Erdős-Rényi)

Let c 2 IR be fixed and G ⇠ G (n, p). If p = log n+c
n , then �0(G ) is

asymptotically Poisson distributed with mean e�c and

lim
n!1

IP[G is connected ] = e�e�c
.
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Random simplicial complexes



Lineal Meshulam 2-face model

Y2(n, p) is the probability space of 2-dimensional simplicial
complexes with vertex set [n] and edge set

�[n]
2

�
and every

2-dimensional face is included with probability p, independently.

Y ⇠ Y2(n, p) is a draw of a random 2-simplicial complex Y from
the distribution Y2(n, p)
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Lineal Meshulam model

Yd(n, p) is the probability space of d-dimensional simplicial
complexes over all simplicial complexes on n vertices with complete
d � 1 skeleton and every d-dimensional face is included with
probability p, independently.

Y ⇠ Yd(n, p) is a draw of a random d-simplicial complex Y from
the distribution Yd(n, p)
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Percolation on complexes

Theorem (Linial,Meshulam)

Let ✏ > 0 be fixed and Y ⇠ Y
2

(n, p). Then

IP[H
1

(Y ,Z/2) = 0] �!
⇢

1 : p � (2 + ✏) log n/n
0 : p  (2� ✏) log n/n.

Theorem (Meshulam, Wallach)

Let d � 2, ` � 2, and ✏ > 0 be fixed and Y ⇠ Yd(n, p). Then

IP[Hd�1

(Y ,Z/`) = 0] �!
⇢

1 : p � (d + ✏) log n/n
0 : p  (d � ✏) log n/n.
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Simple connectivity

Theorem (Babson, Ho↵man, Kahle)

Let ✏ > 0 be fixed and Y ⇠ Y
2

(n, p). Then

IP[⇡
1

(Y ) = 0] �!
(

1 : p � n✏p
n

0 : p  n�✏
p
n



Embedding

Every d-dimensional simplicial complex is embeddable in IR2d+1

but not necessarily in IR2d .

Theorem (Wagner)

There exist constants c
1

, c
2

> 0 such that for Y ⇠ Yd(n, p)

I if p < c
1

/n then with high probability Y is embeddable IR2d ,

I if p > c
2

/n then with high probability Y is not embeddable
IR2d .
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Random clique complex

Xd(n, p) is the probability space of d-dimensional random clique
complexes. Given a random graph G ⇠ G (n, p), the clique
complex X is generated by including as a faces of the clique
complex X (G ) complete subgraphs of G .

X ⇠ Xd(n, p) is a draw of a random d-clique complex X from the
distribution Xd(n, p).
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Random clique complex



Homology vanishing results

Theorem (Kahle)

Fix k � 1 and X ⇠ Xd(n, p) and !(1) a function that tends to
infinity arbitrarily slowly. Then with high probability Hk(X , IR) = 0
if

p �
 
(k/2 + 1) log n + k

2

log log n + !(1)

n

!
1/(k+1)

and Hk(X , IR) 6= 0 if

p 2
"
1/nk ,

 
(k/2 + 1) log n + k

2

log log n � !(1)

n

!
1/(k+1)

#
.



Random flag complex

Kahle and Nanda: E[�(X)] in blue for X(25, p) with
�1 in green, �2 in red, �3 in cyan, and �5 in purple.

# edges

h
o
m
o
l
o
g
y



Percolation and manifolds



Stochastic topology

Robert Adler



Problem statement

Given points P = {Xi , ...,Xn} iid⇠ ⇢ where the support of ⇢ is a
manifoldM.

The empirical object is

U(P, r) =
[

p2P
Br(n)(p).
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Topology of noise

Homology	
  (Betti	
  numbers) Critical	
  points
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Distributions on compact manifolds



Nerve lemma

Theorem (Borsuk, 1948)
The Čech complex Č(P, r) is homotopy equivalent to

S

p2P Br(p).
In particular,

�k

0

B

B

B

B

B

B

B

@

[

p2P
Br(p)

1

C

C

C

C

C

C

C

A

= �k (Č(P, r)).



Problem statement

As n ! 1 and as r ! 0 where are limiting distributions of
(1) Betti numbers ofU(P, r).
(2) The number of critical points of

dP(x) := min
p2P
kx � pk, x 2 IRd .



Earlier work

I Early mention by Milnor—1964

I Gaussian fields on manifolds —-Adler and Taylor, 2003.
I Random triangulated surfaces — Pippenger and Schleich,

2006.
I Random 3-manifolds — Dunfield and Thurston, 2006.
I Random planar linkages— Farber and Kappeller, 2007.
I Random simplicial complexes — Linial and Meshulam, 2006
I Recovery of homology — Niyogi, Smale, and Weinberger,

2008
I Random geometric graphs — Penrose, 2003
I Thresholds for cohomology — Kahle, 2014.
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Three regimes

Subcritical Critical Supercritical

nrd / E[number of points in a ball of radius r]
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Subcritical regime

Theorem:	
  Bobrowski,	
  M

Expected	
  number	
  of	
  k-­‐cycles:

all	
  points	
  are	
  within	
  a	
  ball	
  
of	
  radius	
  r

-­‐	
  subsets	
  with	
  k+2	
  vertices



Subcritical regime

Theorem:	
  Bobrowski,	
  M

Similar results for �k,n [Kahle-Meckes].



Subcritical regime

Exact	
  limit	
  values	
  are	
  known,	
  as	
  well	
  as	
  limit	
  distributions	
  

	
  	
  	
  

Phase	
  transitions:	
  

	
   Critical	
  radius:
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Critical regime

Theorem:	
  Bobrowski,	
  M

Theorem:	
  Bobrowski,	
  M

If nrd ! �, and 1  k  d� 1

• limn!1
E[Nk,n]

n = �k(�),

• limn!1
Var[Nk,n]

n = �2
k(�),

• limn!1
Nk,n�E[Nk,n]p

n

D! N (0,�2
k(�)),



Critical regime

By Morse theory

�n(r) =
d�1X

k=0

(�1)

k�k,n(r) =
dX

k=0

(�1)

kNk,n(r),

implies

n�1E[�n(r)] ! 1 +

dX

k=1

(�1)

k�k(�).



Supercritical regime

Supercritical



Supercritical regime

Theorem:	
  Bobrowski,	
  M

Assume f

min

:= inf

x2M f(x) > 0 and

nr

d ! 1 then for 1  k  d

• lim

n!1
E[Nk,n]

n

= �

k

(1),

• lim

n!1
Var[Nk,n]

n

= �

2
k

(1),

• lim

n!1
Nk,n�E[Nk,n]p

n

D! N (0,�

2
k

(1)).



Supercritical regime

Coverage	
  theorem:	
  Bobrowski,	
  M

If nrkn > C log n

1. If C > (!kf
min

)

�1
, then

lim

n!1
P
⇣
Nk,n =

ˆNk,n, 81  k  d
⌘
= 1.

2. If C > 2(!kf
min

)

�1
, then there exists M > 0 such that for n > M

Nk,n
a.s.
=

ˆNk,n, 81  k  d.



Supercritical regime

Convergance	
  of	
  Betti	
  numbers:	
  Bobrowski,	
  M

If rn ! 0 and nrkn > C log n, then

1. If C > (!kf
min

)

�1
, then

lim

n!1
P (�k,n = �k(M), 80  k  d) = 1.

2. If C > 2(!kf
min

)

�1
, then there exists M > 0 such that for n > M

�k,n
a.s.
= �k(M), 80  k  d.



Supercritical regime

Vacancy	
  probability:	
  

Coverage	
  threshold:

Theorem	
  [Bobrowski,M]



Supercritical regime

No	
  more	
  H1	
  death

No	
  more	
  H1	
  birth



Review of scaling limits

sub-­‐critical critical super-­‐critical

(connectivity) (coverage)

Bobrowski	
  &	
  Kahle	
  –Topology	
  of	
  Random	
  Geometric	
  Complexes:	
  a	
  survey



Open questions and problems

(1) Betti numbers outside the critical regime.

(2) Curved spaces.
(3) Random walks and spectral simiplicial theory.
(4) Higher-order expanders.
(5) Stochastic Hodge theory.
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Homology of level sets



Homology of level sets
Density f : IRd ! IR+ we consider DL = {x : f(x) > L}.

If we know f(xi) at sample points and pick f(xi) > L to construct
homology.

We can use f̂(x) = n�1Pn
i=1 K(x, xi) to pick points.

ideal real



Homology of level sets

Recovering Hk (DL) is hard, noise and homology can be brittle.

Instead look at DL+✏ ,! DL�✏

Bobrowski-M-Taylor, 2015:
Construct an estimator, prove consistency, apply to noisy
topological inference.
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Estimating homology of level sets

Define the following as procedure P1:

(1) Given (X
1

, ...,Xn) compute

D̂L�✏(n, r) := {Xi : f̂n(Xi ) � L� ✏; 1  i  n}
D̂L+✏(n, r) := {Xi : f̂n(Xi ) � L+ ✏; 1  i  n}

(2) Consider the homology map

◆⇤ : H⇤(D̂L+✏(n, r)) �! D̂L�✏(n, r).

(3) Define Ĥ⇤(L, ✏; n) := Im(◆⇤).
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Estimating homology of level sets

Theorem (Bobrowski,M,Taylor)

Let L > 0 and ✏ 2 (0, L/2) be such that the density f (x) has no
critical values in [L� 2✏, L+ 2✏]. If r ! 0 and nrd1 then for n
large enough

IP
⇣
Ĥ⇤(L, ✏; n) ⇠= H⇤(DL)

⌘
� 1� 6ne�C⇤

✏/2nr
d

.

In particular, if nrd � D log n with D > (C ⇤
✏/2)

�1 then

lim
n!1

IP
⇣
Ĥ⇤(L, ✏; n) ⇠= H⇤(DL)

⌘
= 1.
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large enough

IP
⇣
Ĥ⇤(L, ✏; n) ⇠= H⇤(DL)

⌘
� 1� 6ne�C⇤

✏/2nr
d

.

In particular, if nrd � D log n with D > (C ⇤
✏/2)

�1 then

lim
n!1

IP
⇣
Ĥ⇤(L, ✏; n) ⇠= H⇤(DL)

⌘
= 1.
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Random persistence
Define M = [0, 1]d and

⇡(�) :=
�
death

�
birth

.

How does the maximal persistence over all k-cycles scale

⇧k(n) = max
�2PHk (n)

⇡(�).

Theorem (Bobrowski,Kahle,Skraba)

Let Pn be a Poisson process on [0, 1]d and let PHk(n) be the k-th
persistent homology. Then ⇧k(n) scales as

�k(n) :=

✓
log n

log log n

◆
1/k

.
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