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Abstract 
Three-dimensional geometric morphometric (3DGM) methods for placing 

landmarks on digitized bones have become increasingly sophisticated in the last 20 years, 
including greater degrees of automation. One aspect shared by all 3DGM methods is that 
the researcher must designate initial landmarks. Thus, researcher interpretations of 
homology and correspondence are required for and influence representations of shape. 
We present an algorithm allowing fully automatic placement of correspondence points on 
samples of 3D digital models representing bones of different individuals/species, which 
can then be input into standard 3DGM software and analyzed with dimension reduction 
techniques. We test this algorithm against several samples, primarily a dataset of 106 
primate calcanei represented by 1,024 correspondence points per bone.  

We compared results of our automated analysis of these samples to a published 
study using a traditional 3DGM approach with 27 landmarks on each bone. Data were 
analyzed with morphologika2.5 and PAST. Results show strong correlations between 
principal component scores, similar variance partitioning among components, and 
similarities between the shape spaces generated by the automatic and traditional methods. 
While cluster analyses of both automatically generated and traditional datasets produced 
broadly similar results, there were also differences. Overall these results suggest to us 
that automatic quantifications can lead to shape spaces that are as meaningful as those 
based on observer landmarks, thereby presenting potential to save time in data collection, 
increase completeness of morphological quantification, eliminate observer error, and 
allow comparisons of shape diversity between different types of bones. We provide an R 
package for implementing this analysis. 

 
Introduction 

As the theme of this volume is the application of three dimensional (3D) geometric 

morphometrics (GM) to functional morphology, there is little need to convince most 

readers about the importance of morphological studies to evolutionary and developmental 

biological research. However, the utility of detailed morphological information in such 

research has become increasingly questioned (see Springer et al. [2013] comment on 

O’Leary et al. [2013a, b]). Therefore, we would like to emphasize that patterns of 

phenotypic variation (including morphology) among biological structures form the basis 

for understanding gene function (e.g., Morgan, 1911; Abzhanov et al., 2006), 

developmental mechanisms (e.g., Harjunmaa et al., 2012), ecological adaptation (e.g., 

Losos, 1990; Frost et al., 2003), and evolutionary history (e.g., Leakey et al., 1964; 
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Ostrom, 1975; Gingerich et al., 2001). Given its importance in a diverse set of biological 

disciplines, we believe that morphological information remains highly relevant to 

scientific discovery and advancement.  

Since the Modern Synthesis of Evolutionary Theory was reached in the 1940s and 

evolution was appropriately re-defined in its most basic population-genetic context, 

genomic approaches to studying evolution have exploded. In part, this sea change is a 

result of increasingly available data and improving computational power. Ever more 

comprehensive and rapid assessments of genetic variation have been possible as a result 

(Venter et al., 2003). Since the late 1980s, large-scale automated genomic analyses have 

flourished and a great deal is now known about genotypic variation (McVean et al., 2005; 

Houle et al., 2010). Genetic data are even accessible from remains of extinct organisms 

such as subfossil lemurs (Orlando et al., 2008) and Neandertals (Green et al., 2010).  

The utility of morphology is now questioned, in part, because the ability to analyze 

morphological data has progressed much more slowly than the ability to analyze genomic 

data. However, there is a call from some evolutionary biologists for the collection and 

analysis of high-dimensional phenotypic data (Houle et al., 2010) in an analogous high-

throughput and automated fashion. This perspective proposes that the utility and 

information content of genetic data will only reach its fullest extent once data on 

associated phenotypes can be analyzed at equivalent rates and scales. Ideally, increasing 

availability of phenomic data would promote comprehension of how the interaction 

between phenotypic variation and the environment is mediated by the genome and how 

selective pressures on the phenome are transferred to the genome. Reflecting the 

perceived importance of such data, the field of phenomics has recently been defined as 
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that endeavoring to acquire high-dimensional phenotypic data on an organism-wide scale 

(Houle et al., 2010). Although phenomics is defined in analogy to genomics, the analogy 

is misleading in one respect. We can come close to characterizing a genome completely 

but not a phenome, as the information content of phenomes dwarves genomes and is 

heavily influenced by the mode, tempo, duration, and timing of its observation and 

quantification (Houle et al., 2010).  

By itself, variation in morphological structure (a component of phenomic variation) 

has higher dimensionality than variation in the genome, which makes it exponentially 

more difficult to quantify in a meaningful way (e.g., Boyer et al., 2011). This is not to say 

that significant advances in analysis of morphology are impossible or that the field of 

morphometrics has stagnated. As emphasized and demonstrated by work in this volume, 

new and more sophisticated approaches are being developed. More sophisticated 

statistical contexts (Nunn, 2011) are available thanks to improved computing power and 

flexible open-source coding languages (Orme et al., 2011; R Coding Team, 2012). 

Additionally, there is growing automation of shape quantification based on new 

variations of methods for spreading semi-landmarks over a 3D surface model (Bookstein, 

1997; Bookstein et al., 1999; Bookstein et al., 2002; Perez et al., 2006; Harcourt-Smith et 

al., 2008; Mitteroecker and Gunz, 2009). However, 3D shape analyses are generally tied 

to at least two-user determined landmarks (Polly and MacLeod, 2008), and 3DGM 

analyses do not appear to be very meaningful without four or more (Gunz et al., 2005; 

Wiley et al., 2005). As a result, these approaches continue to have many of the same 

limitations as morphological studies from 30-40 years ago. Part of the problem is sample 

size; in most cases the number of measurements, and the sample sizes per study have 
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changed little (compare Berge and Jouffroy [1986] to Moyà-Solà et al. [ 2012] – though 

statistical analyses are more sophisticated in the more recent study, there are no 

substantial differences in measurement complexity or sample sizes in these two studies 

almost 30 years apart). Other principal limitations to the current traditional approach to 

morphological studies include: 1) subjectivity/observer-error in interpretation and 

measurement, 2) time intensiveness for generating large datasets, 3) sparse and 

potentially incomplete and/or biased representation of specimen morphology and sample 

variation, and 4) limited accessibility of information encapsulated in morphology due to 

lack of widespread researcher expertise. All restrictions stem from the necessity that 

researchers must directly observe, interpret, and actively measure (or mark) every 

specimen of a study. These limitations may explain why genetic data currently provide a 

more statistically powerful approach to certain evolutionary questions, and also why 

questions that can be addressed only by morphology (e.g., what physical traits are 

functionally beneficial for a certain behavior?) are often less thoroughly examined or 

appear more controversial despite long histories of analyses. 

As discussed by MacLeod et al. (2010), in order to make the study of morphology 

less of a “cottage industry” and bring it to a new level of objectivity, standardization, 

efficiency, and accessibility, we should seek more automation in the determination of 

patterns of morphological similarity and difference. Several researchers (Lohmann, 1983; 

MacLeod, 1999; Polly and MacLeod, 2008; Sievwright and MacLeod, 2012) have 

worked to develop techniques that minimize assumptions involved in measuring shape 

similarity. Initiatives for “automated taxonomy” exist (Weeks et al., 1999; MacLeod, 

2007) and have had some degree of success. However, all of these automated approaches 
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require a “dimension reduction” in the initial analytical stages, which still necessitates 

that the researcher to make a decision, informed by their understanding of important and 

“equivalent” morphological features on how to make that reduction. Most automated 

work has been carried out on 2D outlines or raster-photographs. In such cases, the shape 

of an outline and the images in a photograph are determined by how the researcher 

orients the camera with respect to the specimen. Even when attempting the “same” view, 

two different researchers may have systematic error with respect to one another or 

different levels of random error in setting up specimens for photography. Furthermore, 

many techniques described as automated, including those for 2D objects, still require 

direct interaction with the study materials to determine at least one “corresponding point” 

common to all the shapes of the study sample (see papers in MacLeod, 2007). 

Biomedical and neuroscience research pursued by computer scientists has led to some 

successful automated quantification procedures in 3D (Styner et al., 2006; Paniagua et al., 

2012). However, these methods have been designed with a limited range of variation in 

mind and applied to monospecific samples. Whether these methods would have 

meaningful success in a sample with more substantial shape diversity among homologous 

objects is unknown. 

In order to begin testing the limits on the degree to which, and the questions for 

which shape analysis can be automated towards a scientifically meaningful end, we 

present a new fully automated algorithm for aligning digital 3D models of bones and 

placing landmarks comprehensively on them. We also provide an R package application 

to promote its testing and use by other researchers. This method builds conceptually on a 

previously published approach (Boyer et al., 2011) where it was shown that a 
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superficially similar algorithm can 1) reasonably match corresponding points on different 

instances of the same bone (represented by different individuals and species), 2) estimate 

shape differences that allow classification of shapes to species with accuracy comparable 

to, or better than, user selected landmarks on the same specimens, and 3) allow for the 

entertainment of different “correspondence hypotheses” based on the morphocline (or 

“path”) that is assumed to connect shapes in the dataset. Operationally, the method of 

Boyer et al. (2011) finds several hundred candidate alignments between conformally-

flattened representations of two objects. Each initial alignment is “improved” using a thin 

plate spline to align automatically identified extremal points (points of high local 

curvature – i.e., “type II landmarks”).  These mappings are then applied to unflattened 

versions of the two objects and a continuous Procrustes distance is computed (Lipman 

and Daubechies, 2010).  The mapping that results in the minimum continuous Procrustes 

distance is treated as the best mapping among the many candidate maps. This minimum 

distance mapping was found to usually represent a biologically meaningful alignment 

according to criteria 1 and 2 described above. 

Despite its successes, the method presented by Boyer et al. (2011) has several 

shortcomings: 1) since correspondences used to determine shape differences are purely 

pairwise and not transitive, there is an inconsistent template for biological 

correspondence relating all pairs of shapes in the dataset); 2) the conformal flattening 

procedure of the analysis limits its application to “disc-type” shapes with an open end 

(like the tooth crowns or ends of long bones of that dataset); and 3) the MATLAB® 

application for the analysis is difficult to work with, lacks good visualization tools, and 

does not yield output that can be widely employed in other analytical procedures.  
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We overcome these limitations in the new algorithm presented here, which we have 

developed into an R-package called auto3dgm. One of the most exciting prospects of 

auto3dgm is its potential to help quantify morphology more comprehensively and 

equably (if not exhaustively). It has long been acknowledged that measurements of select 

characters are less meaningful than more comprehensive approaches: 

 

“Direct determination of rate of evolution for whole organisms, as 

opposed to selected characters of organisms, would be of the greatest 

value for the study of evolution. Matthew wrote, nearly a generation ago 

(1914), ‘to select a few of the great number of structural differences for 

measurement would be almost certainly misleading; to average them all 

would entail many thousands of measurements for each genus or species 

compared.’” (Simpson, 1944: pg.14) 

 

“Another level of description -of entire surface regions, or of volumetric 

elements, or of qualitative aspects of structures rather than structures 

themselves- may in some instances be most meaningful (Roth, 1984, 

1991) and bring us closer to identifying the biological processes of 

interest. Hence the appeal and utility of methods of comparison that 

interpolate between landmark points, such as D'Arcy Thompson's 

transformation grids” (Roth, 1993: pg. 53) 
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Matthew’s implied perspective was that increasing the number of measurements 

would be useful (though impractical) and would approach a representation of the “total 

taxonomic distance.” This taxonomic distance is sometimes referred to as “morphological 

disparity” and may allow meaningful discussion of the amount, rate and pattern of 

evolution among a sample of species in certain settings. A greater amount of 

morphological difference between corresponding and homologous structures is assumed 

to relate to the amount of evolutionary change that has occurred in the compared taxa 

since they diverged from their common ancestor. This idea is reflected in the numerical 

taxonomy movement (Sokal, 1966; Sneath and Sokal, 1973).  

A wealth of careful, mathematically-rooted consideration has been aimed at these 

premises over the years. It has been effectively argued that it is actually impossible to 

generate a generalized comprehensive view of the total phenetic distance between 

specimens or taxa (Bookstein, 1980; Bookstein, 1994; MacLeod, 1999). In fact, 

Bookstein (1991; 1994) argues that morphometrics is purely about documenting 

covariance among biological forms, stating that morphometric methods are neither suited 

for “the computation of ‘magnitude’ of shape change nor for the clustering of individual 

specimens according to degree of similarity of shape” (Bookstein, 1994, p.205). 

MacLeod (1999) explains the insufficiency of morphometrics in this regard, saying: “All 

morphological disparity estimates published thus far represent indices that are 

inextricably tied to particular methods of morphological representation and particular 

scales of morphological assessment”, that “it seems…unlikely that a generalized estimate 

of ‘morphological disparity,’…can ever be achieved.” and finally that it is imperative that 
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“the morphometrician remembers the domain within which he/she operates is strictly 

limited” (MacLeod, 1999, p.134).  

We do not suggest the method we present fundamentally resolves any of these issues. 

It aids in the discussion of morphological disparity because it is more objective and 

comprehensive in its measurement of shape than previous methods. Though Bookstein 

(1994) argues that morphometrics must be applied after homology considerations have 

taken place, we suggest that our method can help identify an “operational homology” or 

“biological correspondence” (Smith, 1990) more objectively.  

Of the various types of homology discussed by evolutionary biologists and 

paleontologists, it is relevant to review at least three different types here: these include 

transformational, operational, and taxic homology (Patterson, 1982; Smith, 1990).  It 

would seem that transformational homology is of primary importance in an evolutionary 

sense. It is similar to Darwinian homology (Simpson, 1961), in which features are 

considered homologous among several taxa if they are equivalent through “descent with 

modification” from the common ancestor. This also matches Van Valen’s (1982) 

definition of homology as “continuity of information” through evolution. Of course, 

comprehension of transformational homology is often fairly elusive, since the 

morphoclines describing it can be expected to gain accuracy with a more complete fossil 

record and an accurate phylogeny of life (Van Valen, 1982).  

Operational homology most generally appears to refer to ontologies defining 

biological correspondence for the sake of measurement, comparison among taxa, and/or 

as a working hypothesis of transformational homology. What Macleod (2001, p.3) 

describes as “geometric (or morphometric) homology (sensu Bookstein 1991)” of 
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geometric morphometrics can be considered as specific types of operational homologies. 

In a way, Thompson (1942), as also quoted by Roth (1993), reminds researchers not to 

forget the distinction between operational homologies and carefully tested hypotheses of 

transformational homology: 

 

“The morphologist, when comparing one organism with another, describes the 

differences between them point by point and "character" by "character" ....and he 

falls readily into the habit of thinking and talking of evolution as though it had 

proceeded on the lines of his own descriptions, point by point, and character by 

character.” (Thompson, 1942, p.1036) 

 

Finally, taxic homology is equivalent to “synapomorphy” or “symplesiomorphy” 

whereby similarity in morphological form (usually referred to as a “character state”) of a 

transformationally homologous feature exhibited by a taxonomic sample of interest is 

thought to reflect the inheritance of that “state” from a common ancestor. Whether 

identified taxic homologies help elucidate phylogenetic relationships depends on whether 

particular character states have evolved numerous times and exhibit homoplasy, as well 

as whether perceptions of transformational homology are correct. When discussing 

features on a finer scale than whole bones or organs, hypotheses of transformational 

homology are usually difficult to test. When the data necessary for such tests are 

available (e.g., via a dense fossil record [Van Valen, 1982]) the results are can be 

surprising.  
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The empirical route to homology hypotheses is a recursive one. Van Valen (1982) 

says that homology is “more than similarity” which means that assessment of shape 

similarity is involved. Shubin (1994) discusses tests and evaluations of homology 

hypotheses, saying homology is “only indirectly related to similarity” and that 

“homologous features may be very dissimilar”. But without an a priori phylogeny, how 

does one postulate homology of dissimilar features? In many cases, operational 

homology hypotheses are qualitatively rooted in geometric similarities even for matching 

dissimilar features in two taxa. For skeletal elements, operational homology (= 

topological correspondence) hypotheses are established by researchers physically or 

conceptually seriating features of specimens into morphoclines. The correspondence 

among end-members of the morphocline (the humeri of a whale and a bat – for instance) 

may be un-interpretable next to each other, but will have more definitive operational 

homologies if they are compared through the intermediate forms along a taxonomically 

rich seriated sample. Of course, this task is aided by information beyond the geometry of 

isolated bones: the position and orientation of the bone in the complete skeleton is also 

known and used (i.e., cues from “type I” landmarks). Different researchers may see and 

emphasize different aspects of shape, and samples with different taxa will suggest 

different morphoclines and possibly different patterns of correspondence among end-

members. As Roth (1993, p.53) says “The recognition, and operational definition, of 

homologous points is a non-trivial problem (Jardine, 1969; Smith, 1990), and one not 

necessarily with unique solutions.” Furthermore, different skeletal element sets from the 

same taxonomic sample may seriate in morphoclines with different taxonomic orderings. 

For example, the calcaneus bone of a tarsier has the most extreme form in comparison to 
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any sample of primate species, whereas the astragalus bone of tarsiers can be described as 

roughly intermediate between that of certain anthropoid and strepsirrhine primates). For a 

given taxonomic sample, a consideration of which bones arrange in morphoclines with 

similar orderings of taxa (and thereby present congruent pictures of operational 

homology) aids in formulating phylogeny hypotheses. Cladistic parsimony analyses are 

conceptually related to this practice. Clearly, determination of operational homology is at 

least partly based on a qualitative consideration of geometric similarity and morphoclines 

among samples. Our automated procedure, which considers the total surface of bones and 

the pattern of distances between them, can be implemented toward this end.  

Because auto3dgm determines feature correspondence objectively (algorithmically) 

and more comprehensively, it can assess morphological differences in a way that suffers 

from less measurement sensitivity. This decreased sensitivity makes the shape 

quantifications of one bone or ‘part’ more easily generalizable to other parts compared 

with previous methods (as we will demonstrate with an example). Ultimately, this allows 

greater insight into patterns in, and the generation of, morphological disparity through the 

evolutionary process.  

 

Materials and Methods 

Institutional abbreviations.— AMNH, American Museum of Natural History, 

New York, NY; CGM, Egyptian Geological Museum, Cairo, Egypt; DPC, Duke Lemur 

Center Division of Fossil Primates, Durham, NC; GU, H.N.B Garhwal University, 

Srinagar, Uttarakhand, India; IGM, Museo Geológico del Instituto Nacional de 

Investigaciones Geológico-Mineras, Bogotá, Colombia; IRSNB, Institut Royal des 
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Sciences Naturelles del Belgique, Brussels, Belgium; KU, Kyoto University, Kyoto, 

Japan; MCZ, Museum of Comparative Zoology, Harvard University, Cambridge, MA; 

MNHN, Muséum National d’Histoire Naturelle, Paris, France; NMB, Naturhistorisches 

Museum Basel, Basel, Switzerland; NMNH, Smithsonian Institution National Museum of 

Natural History, Washington, D.C.; NYCEP, New York Consortium in Evolutionary 

Primatology, New York, NY; SBU, Stony Brook University, Stony Brook, NY; 

SDNHM, San Diego Natural History Museum, San Diego, California; SMM, Science 

Museum of Minnesota, Minneapolis, MN; UCM, University of Colorado Museum of 

Natural History, Boulder, CO; UCMP, University of California Museum of Paleontology, 

Berkeley, California; UK, University of Kentucky, Lexington, KY; UM, University of 

Michigan, Ann Arbor, Michigan; USGS, U.S. Geological Survey, Denver, Colorado. 

Samples.—We utilize four samples of surface meshes generated from either microCT 

or laser scans to test auto3dgm. Table 1 is a taxonomic list for each dataset with sample 

sizes per genus (supplemental tables 1-3 give the specimen numbers for each sample). 

The first sample includes 106 calcaneal bones of 67 genera, and is the exact sample used 

by Gladman et al. (2013). We test our method by running the same analyses on this 

sample as Gladman et al. (2013) and compare the results. auto3dgm produces landmark 

datasets that can be analyzed in a manner identical to traditional user-collected landmark 

datasets. The second sample is comprised of 80 astragali that we analyze and compare to 

a subset of 80 calcanei from the first sample. The third sample is of 49 distal phalanges 

representing fossil and extant taxa to demonstrate the method on a bone with a “different 

quality” of shape variation. Distal phalanges are basically cone-shaped with fewer 

consistent “feature points” than astragali or calcanei, but exhibit a range of forms from 
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“blade-like” (falcular) to “spatulate” (unguliform) (Fig. 1). Therefore, each bone is less 

complex, but the range of variation across the sample remains substantial. The fourth 

sample also represents astragali and overlaps the second, but includes additional 

specimens and species (Table 1). This sample is used to demonstrate the semi-supervised 

alignment procedure of the R-package “Shape_Alignment”. 

Sample processing.—Very little pre-processing is required for auto3dgm. Surface 

files should be in the Open file format (.off) and of sufficient resolution to capture all 

surface features of interest. It should be noted that the .off format is closely related to 

more widely known Stanford Polygonal Mesh (.ply) format. The free software MeshLab 

can be used to convert .ply files to .off files, as well as batch converters (see 

http://www.stat.duke.edu/~sayan/3DGM/index.shtml).  If made from CT scans, the 

surfaces must be carefully checked and cleaned so they have no internal vertices. 

Virtually no processing is required for laser-scan generated data aside from smoothing or 

filling holes in the mesh.  

The majority of surface files in our datasets were generated by microCT scanning. 

Details on both laser- and microCT scanning parameters of the astragalus and calcaneus 

specimens have been reported on previously in appendices and supplementary tables 

(Boyer and Seiffert, 2013; Boyer et al., 2013). The distal phalanx dataset is new. 

auto3dgm input and output files.— The method demonstrated here was developed by 

Puente (2013) as a major component of a Ph.D. thesis and the mathematical details can 

be found there. Additional technical papers focusing on mathematics are forthcoming 

(Puente and Daubechies, in preparation). The input files for the routine are a set of 

surface mesh files in .off format. The user must also supply a set of “low resolution” 



	
   16	
  

versions of the mesh files that will be used by the algorithm to generate summary images. 

Downsampling of mesh files can be accomplished with visualization programs such as 

Meshlab (Cignoni et al., 2012), Avizo (Visualization Sciences Group, 2009), and 

Geomagic (3D Systems Inc., 2013). 

The outputs include 1) an “alignment file”, which is a “multi-surface”.off file that 

includes displays of user-supplied low resolution renderings of all specimens shown in 

the algorithm-determined optimal alignment (Fig. 2); 2) an “MDS file,” which is another 

multi-surface file that embeds the same aligned renderings of specimens in a coordinate 

space determined by a multi-dimensional scaling (MDS) analysis of the distance matrix 

of aligned specimens (again for visualization purposes) (Fig. 3); 3) a “scaled”.txt file with 

all of the coordinate data for all specimens scaled to the same centroid size, that can be 

loaded into, visualized, and analyzed in morphologika2.5 (O’Higgins and Jones, 2006); 4) 

an “unscaled”.txt file with all of the coordinate data for all specimens at the scale of the 

original input files which can also be analyzed in morphologika2.5; and 5) a folder with 

copies of all the original input files, the coordinates of which have been multiplied by the 

rotation matrix used in the final alignments. 

The purpose of the alignment file is to check for errors generated by the alignment 

algorithm. If errors are found, we provide functions allowing for a semi-supervised 

repair, though most likely such errors indicate insufficient degrees of incremental 

variation in the dataset (i.e., the morphological gaps between a single specimen, or 

certain groups of specimens, and the rest of the dataset are too large). The purpose of the 

MDS file is to provide a quick view of the phenetic affinities suggested by the matrix of 

continuous Procrustes distances between specimens in the analysis. The morphologika2.5 
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file allows further analyses of the sample of shapes as aligned by the method. Finally, the 

aligned versions of the input files provides data for users who wish to standardize 

alignment before taking measurements that are sensitive to orientation [like relief indices 

or other topographic variables measured on teeth (Bunn et al., 2011)], or who wish to use 

the images for figure generation. 

Pseudolandmarks and alignment.— In order to facilitate adoption of this method by 

3DGM community, this protocol represents and aligns pairs of surfaces with landmark-

like feature points. We say these are “landmark-like” because we represent each bone 

with same number of points (in this study 1,024 points per bone are used, but the 

algorithm can be set to use more or fewer), and by the final stage of the algorithm each 

point has a fairly consistent biological identity across all bones of the sample. Each of 

these points is therefore analogous to an observer-placed landmark. On the other hand, 

they are not identified based on any of the criteria for determining type I, II, or III 

landmarks (Zelditch et al., 2004), or even semi-landmarks (Bookstein, 1997; 

Mitteroecker and Gunz, 2009), and therefore are dubbed “pseudolandmarks” here. Other 

recent fully automated algorithms (Boyer et al., 2011) do not generate a globally 

consistent mapping of a set number of points across all specimens of a dataset, and this 

limits their utility for certain applications. 

Major computational steps.— There are at least four important ingredients to the 

protocol. The first is re-sampling of surface coordinates to a specified standard number of 

points (Fig. 4). This is done using approaches that evenly spread points over the surface 

(Eldar et al., 1997). Once a new sample of bones with a standard number of evenly 

spread coordinates has been generated, the algorithm attempts to align each pair of bones 
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using an iterative closest points (ICP) procedure (Besl and McKay, 1992). We avoid 

incorrect local minima known to plague ICP by having our algorithm assume that 

principal axes of variation will tend to be homologous in some sense between bones. 

After computing the principal axes of variation in points for two surfaces, the algorithm 

attempts alignments where the first principal axes are aligned in one of two possible ways 

(Fig. 5). There are a total of eight ways to align the first through third principal axes, and 

these eight possible alignments are our starting points for ICP. They can be run 

simultaneously, and an approximation of the global minimum Procrustes distance can be 

found quickly (especially if a low number of pseudolandmarks are used). Of course, a 

major advantage of the method is the ability to include large numbers of data points on 

the surface. To resolve the conflict between processing speed and accuracy, our algorithm 

performs initial alignments with highly down-sampled surfaces using several hundred 

points (the exact number of pseudolandmarks is a user-defined parameter). Next, more 

densely sampled surfaces are rigidly transformed to match their down-sampled 

counterparts, so that only the final “tweaking” of the alignment has to be performed on 

the full-resolution surface file. 

Since the best alignment is found by computing a Procrustes distance, a Procrustes 

distance matrix is available for computation of a minimum spanning tree (MST) for the 

sample. The MST connects all cases in the dataset using the shortest edge length possible 

and is a unique solution, except in datasets where several cases are exactly equidistant 

from each other. Though not all points will be connected to their nearest neighbors in 

such a tree, most connections represent a joining of nearest neighbors for one of the cases 

involved. In datasets with high degrees of shape diversity, it is virtually guaranteed that 
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between certain pairs of bones, the minimum Procrustes alignment will be a biologically 

meaningless arrangement. However, because the pairs connected by the segments of 

MST are among the shortest in the distance matrix, they are the most likely to be 

biologically meaningful and/or precise alignments. Therefore, instead of attempting to 

directly align pairs of shapes that have a relatively large Procrustes distance separating 

them, alignments between such pairs are generated by propagating alignments between 

intermediate shapes, ultimately allowing very different shapes to be aligned indirectly 

(Fig. 6). 

Parameters that must be specified.—Before the “automated part” of our algorithm can 

begin, the user must choose values for three parameters. Varying values of these 

parameters (see below), improves fidelity, detail, and accuracy of alignment in the one 

direction, and speed of calculation in the other. It may be possible to determine optimal 

values for these parameters in more or less general conditions by incrementally 

modifying them, re-running analyses, and checking the results. We have not yet done this 

systematically. The parameters to be set include 1) the number of points used to represent 

shapes in the low resolution version of the alignment; 2) the number of points to 

represent shapes in the high-resolution, or final version of the alignment; and 3) the 

number of principal alignments (usually this number is set to the eight possible 

combinations of the alignments along the first three principal axes, but additional random 

principal alignments can be chosen). In the first three samples we evaluate in this study, 

we use the following pairs of point numbers: Calcaneus dataset of 106 specimens: 

initial=150 points, final=1,024 points, 8 principal alignments; paired calcaneus and 

astragalus datasets: initial=256 points, final=1,024 points, 12 principal alignments; distal 
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phalanx dataset: same as for paired astragalus and calcaneus. In the fourth dataset we use 

far fewer points in order to generate problematic alignments: initial = 32, final = 64, 8 

principal alignments. 

Fixing errors in the alignment protocol.—Because it is sometimes the case that at 

least one specimen is mapped into the MST with an incorrect alignment, it is important to 

provide options for correcting the problem.  

1. Usually such problems stem from insufficient number of initial points (first 

parameter above). Thus, the first step is to try re-running the initial steps of the 

algorithm with slightly greater numbers of points per file. However, the problem 

can also stem from the lack of an adequately similar partner shape in the dataset 

(from the perspective of its orientation and articulation in the skeleton). This 

shape represents an “island shape” for which the best geometric alignment (that 

with the smallest Procrustes distance) to any other shape is a biologically 

"incorrect" alignment. This property does not guarantee a bad alignment since it 

may not connect to its nearest neighbor in the minimum spanning tree, but it often 

allows one. However, it is possible that there are still some shapes in the sample 

with which the island shape(s) will correctly align. We do not currently have an 

automated protocol for discovering such shapes, if they exist. We have 

implemented two different protocols for fixing alignment problems. If there is a 

single misaligned shape: We allow the user to display the results of direct 

alignments of the island shape to each of the other shapes in the sample using the 

function branch_pw_distances.r in the R-package. If there are n specimens in the 

sample, this function creates n-1 multi-surface mesh files.  There is one file for 



	
   21	
  

every corresponding pair between the island shape and the remaining shapes. 

Even if n is very large, these can be visually scanned quickly to find a correct 

alignment.  Tiling the multiple files in Meshlab or Aviso is one possible way of 

quickly arriving at the correct alignment when n is large.   If the user finds a shape 

to which the island shape correctly aligns, the MST is re-calculated without the 

island shape, the global alignment of the remaining shapes is double-checked, and 

the island shape is connected to the new MST through its successfully aligning 

partner. The analysis is then completed in the usual way. If there are multiple 

specimens with which the island shape correctly aligns, the user can choose which 

to use as the connecting shape, though it seems logical to choose that with the 

smallest Procrustes distance to the island shape.  The pairwise output files from 

branch_pw_distances.r orders the shape correspondences by their Procrustes 

distance.  The ordering of correspondence will be in the name of the files for 

clarity.   	
  

2. If there are multiple island shapes, a more involved protocol is required, because 

there may be several groups of consistently aligned shapes (Fig. 7). The general 

problem is that the analysis may return a result in which certain branches are 

internally consistent, but are misaligned with respect to other such branches. It is 

therefore necessary to have a protocol allowing the user to chop apart these 

branches and stick them back together in a way that ensures a globally consistent 

alignment. The work-flow described below is provided by the example file 

“alignFix.r” and is available on the first author’s website. Documentation that 

accompanies “alignFix.r” guides the user through a sample problematic dataset 
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(our dataset 4). Users should then be able to edit the code of “alignFix.r” to suit 

their datasets.	
  

a. Observe misaligned regions using alignment and map files (Figs. 7A and 

7B) together.	
  

a.i. If only one misaligned file is observed, follow the procedure 

described above.	
  

a.ii. If more than one misaligned file is observed:	
  

a.ii.1. Record the alignment numbers of the misaligned 

files. 	
  

a.ii.2. View the MDS graph showing the MST 

connections on points labeled by the alignment number 

they represent. 	
  

b. Using the map file and the MST, figure out how many "groups" of 

misaligned files exist, and how many specimens in each group, 

and record this information. 	
  

b.i. Specify all "groups greater than 2" (three or more files that are 

correctly aligned to each other, but not to surrounding shapes) as 

"groups to analyze separately", since a MST will need to be re-

computed within each group.	
  

c. For “b.i.”, a separate alignment analysis is run on each group of three or 

more that were internally consistent and all the necessary information is 

saved (Fig. 7C).	
  

d. Now the user must decide how to "re-connect" the separate sub-groups.	
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d.i. First attempt to analyze all of the shapes in non-connected 

segments of the minimum spanning tree. For example, with four 

groups (A, B, C, and D), it is possible that only one will end up 

connecting to the other three through the MST. If both A, C and D 

connect to B in the original analysis, and are misaligned with 

respect to B, it is possible that with B excluded, A, C and D will 

align correctly. If this is true, skip to “d.iv.1” of this description. If 

not, go to number “d.ii.”	
  

d.ii. For cases in which the set of non-connecting groups is still an 

incorrect alignment, the non-connecting groups should be 

compared in a pairwise fashion. For instance A-C, A-D, and D-C 

should each be analyzed separately. It is possible that some of 

these will have correct alignments. If more than two of these are 

correct, a decision will have to made on which two to merge, since 

it has already been demonstrated that all three cannot be. We 

would suggest merging the two that result in the biggest difference 

in the number of specimens represented in the final two groups, 

since this makes the subsequent task of searching for a correct 

alignment between groups that are not correct via their MST 

easier. At this stage, the goal should be to merge as many isolated 

groups together as possible in order to reduce computational 

demand in the next steps. Ultimately, the user can decide which 

groups to merge.	
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d.iii. After managing the isolated but internally consistent segments of 

the original MST (groups A, C and D above), the user needs to 

find a "correct" connection between the isolated groups that 

were misaligned with respect to each other through the 

original MST. Some remnant of the original MST will still be 

preserved, which can be called the “base tree” (group B in our 

example). Attempting to reconnect the isolated groups to the base 

tree using the minimum distance pair will likely generate 

misalignments, since the MST connections were wrong in the 

original analysis. However, as MST connections often only 

represent nearest neighbors for one of the two connected cases, 

there is still a possibility that one of the cases involved in the 

incorrectly aligning connection between the base tree and another 

segment was not connected to its nearest neighbor. This makes it 

important to look at the minimum distance pairs of the isolated 

groups and the base tree.	
  

d.iv. Assuming the minimum distance pair is still a misalignment, a 

protocol for checking alignments between particular shapes in each 

group must be implemented.  This again utilizes the function 

branch_pw_distances.r.   	
  

d.iv.1. The user has the option to check all alignments. The 

output is n x m "summary alignment files" in which n is the 

number of specimens in one group and m is the number in 
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the other group being searched. Each file shows one shape 

from the group with n with one of the m specimens of the 

second group (Fig. 7E). The output files are labeled 

according to minimum Procrustes distance, so that the first 

compared specimens are nearest neighbors. The user can 

then easily identify the correctly aligning pair that also has 

the minimum Procrustes distance (since there may be more 

than one correctly aligning pair).	
  

d.iv.2. This process should be repeated for all segments 

that could not be merged. If there were three remaining 

segments (e.g., a base tree B, an A-C group and D), there 

will likely be an option of whether to link each tree to one 

of two others. We would suggest this linking be done using 

the option when the Procrustes distance between the linking 

pair is minimized.	
  

d.iv.3. The user can also opt to only compare specific 

specimens from one group to specific specimens in the 

other.	
  

d.v. Finally, all groups are re-aligned using a tree that represents each 

separate MST connected along user-specified pathways in “d.iv.2” 

This should result in correct alignments for all bones in the sample 

(Fig. 7G).	
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If the user determines successful alignments between groups of island shapes are 

impossible, there are two options: 1) remove any island shape groups from the analysis 

(particularly if their inclusion does not directly address the main questions of the 

analysis); or 2) add more shapes with the hope of bridging distances between island 

shapes.  

Getting the code for running analyses.— The R package we developed is called 

auto3dgm.  At the time of publication auto3dgm has been submitted to CRAN for review, 

and will ultimately be accessible from their repositories.  Until then, auto3dgm can be 

downloaded at www.dougmboyer.com or 

http://www.stat.duke.edu/~sayan/3DGM/index.shtml.  The sample/instructional file for 

fixing misaligned shapes, alignFix.R, is not part of the R-package itself and will not be 

available on CRAN.  It can however be downloaded from the personal websites 

mentioned above.  Documentation for the packages can be found at these sites as well. 

Comparison to results from traditional landmarks.—In order to maximize our ability 

to compare and contrast shape information provided by our pseudolandmarks with 

traditional geometric morphometric datasets, we used the same sample and performed the 

same analyses on the pseudolandmarked dataset as Gladman et al. (2013) conducted 

using 27 landmarks and traditional 3DGM techniques. 

First, the 3D pseudolandmark coordinate-scaled output file from our algorithm was 

imported into morphologika2.5. We then ran a General Procrustes Analysis (GPA) with 

reflections enabled, followed by a Principal Components Analysis (PCA) with “Full 

Tangent Space Projection” checked for Calculation Options and “Eigenvalues” and “PC 

Scores” checked for Printing Output Options. The results were saved as a .csv file that 
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included the PCA output, along with the raw Procrustes distance data in the form of 3D 

coordinates for each landmarked individual. In morphologika2.5, the cloud of 1,024 

landmarks was visualized and the morphospace of the PC axes was explored. In the 

traditional 3DGM analysis of this sample, Gladman et al. (2013) added wireframes to the 

landmarks in order to directly visualize shape changes. Due to the number of 

pseudolandmarks used by auto3dgm, wireframes are currently impractical, but shape 

changes can easily be observed from transformations of the densely packed 

pseudolandmarks. All Principal Components (PCs) were examined in morphologika2.5 by 

tracking changes in the cloud of 3D landmarks between the extreme morphospace of each 

axis. The amount and nature of variation represented by these axes in the 1,024 

pseudolandmark dataset was then compared to results from the 27 user-determined 

landmarks of the Gladman et al. (2013) analyses. 

Gladman et al. (2013) also used analyses of “generic” means for cluster analyses in 

their study of the 106 calcanei sample used here. They felt that averaging the few 

individuals for each genus helped control for any extreme variation that might otherwise 

dominate the small samples being used to represent extant genera. We replicated their 

approach with the pseudolandmark coordinates here. Extant genera represented by more 

than one individual were averaged into a single genus representative (Table 1). As in 

Gladman et al. (2013), fossil individuals were not averaged together in the analyses. 

Altogether the dataset was reduced from 106 individuals to 67 generic representatives 

(Table 1). 

In order to generate generic means, the matrix of 3D coordinate Procrustes output 

data (generated in morphologika2.5) was imported into PAST statistical software 
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(Hammer et al., 2001; Hammer et al., 2006). In PAST, all individuals of a single genus 

were highlighted and averaged using the “Evaluate Expression” function in the 

“Transform” menu. “Mean (of current column)” was selected in the “Evaluate 

Expression” menu and then “Compute” in order to change all highlighted rows to the 

same averaged values. Only one of these newly averaged rows was kept in the dataset to 

represent a given genus. This technique can be done manually by averaging each X, Y, 

and Z value separately for each landmark for members of each genus, although with 

increasingly larger datasets this becomes untenable. Once the averaged dataset was 

complete, cluster analyses were run within PAST and then compared to the generic mean 

analyses of Gladman et al. (2013). 

Mixed bone analysis.—It has been suggested that traditional 3DGM methods could be 

used to “pool information” from more than one structure (Rohlf, 2002). However, the 

meaning of results from such an approach is questionable, as the weight of each structure 

added will depend on the user’s choice of landmarks, as well as the number of landmarks 

used to represent each bone. Furthermore, since there is no basis for collecting landmark 

data across bone types, it has never been possible to include multiple bone types in the 

same 3DGM analysis using the same landmark template. Our approach with auto3dgm, 

based on spreading landmarks evenly and selecting alignments based on overall 

geometric similarity, provides a solution to this problem and allows mutli-bone types of 

analysis. There are many questions that can be addressed if shape variation can be 

compared between bone types. For instance, we might wish to ask whether the astragalus 

has less shape diversity than the calcaneus, due to the former articulating with a greater 

number of bones and lacking muscular attachments as exhibited by the latter. We might 
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also be interested in investigating whether the degree of overall shape variation is 

associated with stronger phylogenetic signal (Nunn, 2011) or stronger functional signals. 

We performed the first “mixed bone” analysis on a sample of 80 astragali and 80 calcanei 

representing the same taxa (although sometimes composed of different specimens) and 

we compare intrinsic levels of overall shape variation. 

The basic goal of such an analysis (given the questions above) is to provide a 

quantitative criterion for comparing size-standardized shape variation between two bones. 

Since regions on the surface of a calcaneus do not “biologically correspond” in any way 

to regions on the surface of the astragalus, there is no need to determine a biologically 

meaningful regional correspondence between them. Therefore, only the most efficient 

geometric alignment must be established (i.e., the alignment that minimizes the 

Procrustes distance). However, in a mixed bone analysis, astragali will not only be 

compared to calcanei, they will also be compared to other astragali. Thus, for some bones 

in the sample, there is a biologically significant alignment that must be discovered before 

comparisons can be made.  

To establish a globally transitive pseudolandmark coordinate dataset for a mixed bone 

sample, we first ran auto3dgm on the calcaneus and astragalus datasets separately to 

produce two sets of globally consistent pseudolandmark datasets. We then performed 

searches for the alignment and correspondence between an astragalus and calcaneus that 

exhibited the minimum Procrustes distance among all such pairs in the combined dataset 

using the branch_pw_distance.r function. In the second step, we were only concerned 

with distances since no details about the alignment mattered biologically. Once we found 

the mixed bone pair with the smallest geometric distance separating them, we used that 
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pair to link the MSTs of the initial analyses, creating a mixed-bone, global-

correspondence, 3D pseudolandmark dataset. This dataset was imported into 

morphologika2.5 and processed with GPA followed by PCA, with results exported as a 

.csv file, and final analyses performed in PAST like the analyses above.  

We ran statistics on four samples: 1) pairwise distances separating the calcanei, 2) 

pairwise distances separating the astragali, 3) the combined dataset of 160 astragali and 

calcanei, and 4) a combined dataset representing only 40 astragali and 40 calcanei (with 

taxa matched between the two halves of the sample). We also analyzed the first two PC 

scores of the astragalus and calcaneus separately looking at their range, variation, and 

computing their phylogenetic signal. Phylogenetic signal was also calculated on 

Procrustes distances from the mean for the astragalus dataset and calcaneus dataset. 

Phylogenetic signal was calculated using caper (Orme et al., 2011) in R, and a tree based 

on v3 of the primate dataset from 10k Trees (Arnold et al., 2010). Testing for 

phylogenetic signal (Pagel’s λ) required using generic means of the sample and reduced 

the sample size from 80 individuals to 42 genus-averaged individuals. 

 

Results 

Alignment success.— Alignment for the calcaneal dataset of 106 bones was 

successfully accomplished with a low resolution initial alignment of 150 points, and eight 

principal alignments (Suppl. Fig. 1). The final high-resolution surface alignment was 

based on 1,024 points. Successful alignment for the calcaneal dataset of 80 bones was 

accomplished with a low-resolution initial alignment of 256 points, eight initial positions 

based on all possible combinations along three principal axes, and a high-resolution final 
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surface alignment based on 1,024 points. Successful alignment for the astragalar dataset 

of 80 bones was accomplished with a low-resolution initial alignment of 256 points, 12 

initial alignments, and a high-resolution final surface alignment based on 1,024 points 

(Suppl. Fig. 2).  

The distal phalanx dataset was aligned using a low-resolution initial alignment of 256 

points, 12 initial alignments, and a high-resolution final surface alignment based on 1,024 

points (Suppl. Fig. 3). One specimen, UCMP 217919 (a fossil of unknown taxonomic 

affinities), had an incorrect alignment to its connecting shape in the MST (a tarsier 

second digit grooming claw, USNM 196477). We identified a correct alignment with 

SMM P77.33.517, a claw of Plesiadapis churchilli. This is not to say these two bones are 

very similar. It simply shows that it is usually possible to establish correct alignments for 

every bone in the sample without manually registering them to each other. 

Comparison to results from traditional landmarks.— For the PCA of output from 

auto3dgm on individual specimens (n=106, with no genus-level averaging), the first four 

principal component (PC) axes account for 59.6% of the total variance. This is very close 

to that explained in the analysis of the same sample using 27 landmarks by Gladman et 

al. (2013) (Table 2). Generally speaking, major clades were well separated when plotted 

in morphospace, as in Gladman et al. (2013) (Fig. 8). Examination of the 3D landmark 

cloud in morphologika2.5, and the general distribution of specimens in the scatter plots of 

the PCA morphospace, indicates that PC1 (34.7%) is mostly associated with the overall 

length and width proportions of the calcanei, with some emphasis on the distal 

elongation. The distally elongated and narrow-bodied calcanei of omomyiforms and 

some strepsirrhines dominate one extreme of the PC1 axis, while the distally shorter and 
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wide hominoid calcanei fall on the opposite extreme. This pattern matched well that 

found by Gladman et al. (2013). Regressing PC1 scores based on manually positioned 

landmarks against the PC1 scores from analysis of auto3dgm output showed high 

correlations (Table 3). Other axes were more modestly correlated or lacked significant 

correlations. 

Variation found in PC2 (13.6%) captured some aspects of the “flexing” of the 

calcaneus described by Gladman et al. (2013), although the distribution of the taxa within 

this PC is not identical to the original description. This PC most notably varies in the 

position of the distal margin of the ectal facet relative to the body of the calcaneus, either 

raised dorsally off of the body or sunken plantarly. The hominoids are found on one 

extreme, with ectal facets that sit atop of the calcaneal body, while platyrrhines are the 

most consistent examples of calcanei with ectal facets depressed into the body. Although 

more difficult to observe directly from the cloud of pseudolandmarks in morphologika2.5, 

there also does seem to be variation in the magnitude, although not the position, of the 

peroneal tubercle captured in this axis. 

The variation found in PC3 (6.7%) also resembles some of the “flexing” that has been 

previously described, although it also includes new variation not recognized in the 

previous traditional analyses. On the extremes for this PC axis are the hominoids 

(excluding hylobatids), which have a pronounced proximal plantar heel process and a 

dorsal bowing of the body of the calcaneus (giving an un-flexed appearance). At the other 

extreme are most of the colobines (excluding only Colobus), which have no proximal 

plantar heel process and have a more prominent plantar bowing (flexed appearance) 

caused, in part, by a more prominent angulation of the body at the distal plantar tubercle. 
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The tradeoff in this axis is between an unflexed calcaneus driven by the presence of a 

plantar heel and a flexed calcaneus driven by a heightened angle at the distal plantar 

turbercle.  

Finally, similar to PC3 above, PC4 (4.6%) also contributes to variation at the distal 

plantar tubercle. However, unlike the variation in PC3, the distal plantar tubercle in PC4 

only gets larger or smaller in size, and there are no clear changes in the angulation at the 

tubercle. This PC exhibits variation most notably in the amount of proximal segment 

elongation and the position of the dorsal heel relative to the ectal facet. While PC1 

contained aspects of distal elongation within the larger length and width proportional 

changes of the calcaneus, PC4 is specifically associated with the elongation of the 

proximal segment of the calcaneus, measured from the ectal facet to the heel. 

Additionally, at the extreme of the PC where the proximal segment is shortest, the dorsal 

heel is near level with the ectal facet, while at the elongated proximal extreme the heel is 

sub-level to the ectal facet. The fossil euprimates lie at the extremes for this variation, 

with omomyiforms exhibiting very low amounts of proximal elongation and the 

adapiforms in this sample with some of the highest levels.  

Cluster analyses of the genus-averaged sample provide another way to compare the 

results of the analyses of auto3dgm generated pseudolandmarks to the results of the 

traditional landmark analyses reported by Gladman et al. (2013). Though there are many 

differences when comparing the two analyses by their various dendrograms, there are 

broad similarities as well (Figs. 9-11). Dendrograms for traditional landmark analysis can 

be viewed in Gladman et al. (2013: their figures 9 & 10, pp. 384-386). We detail 

comparisons for the Neighbor-Joining (NJ) trees here, and note that similar results are 
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obtained from comparisons between the UPGMA and Wards trees (although these latter 

two clustering algorithms will not be discussed further).  

Similarities in the NJ tree (Fig. 9) include the clustering of adapiforms near the taxon 

chosen as the tree root, Marcgodinotius indicus. Extant strepsirrhines and omomyids also 

cluster together. Within this cluster there are more detailed similarities: Lepilemur + 

Ourayia (SDNM 60933) and Omomyid indet. (AMNH 29164) + Washakius insignis 

(AMNH 88824) form two pairs of nearest neighbors, which form a unitary cluster with 

Teilhardina (IRSNB 16786-03) and Omomys (UM 98604) in both analyses. Eulemur, 

Hapalemur, and Lemur form a cluster in both analyses. Varecia is external to all 

members of the strepsirrhine + omomyiform group except Daubentonia. All indriids are 

adjacent to each other. Anthropoids form a unitary cluster separate from non-anthropoids 

in both analyses, and hominid and pitheciine genera form unitary clusters with respective 

members of their clades alone (i.e., monophyletic clusters). 

Major differences include Daubentonia falling outside of all clusters and occupying 

the position closest to the root in the auto3dgm based analyses, whereas in Gladman et al. 

(2013) it clusters with other strepsirrhines. Adapiforms form a unitary cluster with 

strepsirrhines and omomyiforms in the auto3dgm based results, whereas in Gladman et 

al. (2013), adapiforms formed a unitary cluster basal to all other clusters  (in the position 

of Daubentonia in the auto3dgm based analysis). In Gladman et al. (2013), the 

strepsirrhine + omomyiform cluster and the anthropoid cluster group more closely to each 

other than either does to the adapiform cluster. Though indriids are adjacent in both 

analyses, they do not form a unitary cluster in the auto3dgm based analysis, and 

Propithecus groups with Avahi, rather than with Indri as in Gladman et al. (2013). In the 
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auto3dgm based analysis, adapiform fossils cluster cleanly by assigned genus with four 

Cantius, two Smilodectes, and two Notharctus fossils forming three sets of unitary 

clusters, while in Gladman et al. (2013) these specimens are more mixed. Atelids form a 

unitary cluster in auto3dgm based analysis; in Gladman et al. (2013), they are only 

adjacent. Hylobatids do not cluster near other hominoids in auto3dgm based analysis, 

whereas hominoids form a unitary cluster in Gladman et al. (2013). Proteopithecus (DPC 

24776) clusters at the base of a grouping composed primarily of platyrrhines in auto3dgm 

based analysis, whereas it clusters at the base of, and exclusively with, Fayum 

parapithecid fossils in Gladman et al. (2013). Generally speaking, auto3dgm based results 

were less precise when it comes to interpretable clusters of platyrrhines, cercopithecoids, 

and hominoids compared to the results of Gladman et al. (2013). 

Mixed bone analysis.—Because all bones are first scaled to the same unit centroid 

size (the square root of the sum of squared distances of all landmarks to the centroid of 

the object), there is a theoretical maximum distance that can accumulate between any pair 

of bones, and therefore also among all pairs of bones of a given sample size. Nonetheless, 

the Procrustes distance for any pair of bones and a sample of any size can also approach 

zero, meaning that shape diversity can be compared by looking at the mean and variance 

of distances in the distance matrix.  

Interestingly, we found that the mean inter-specimen distance and standard deviation 

were virtually identical for the calcaneal dataset and astragalus dataset treated separately. 

On the other hand, the mixed samples (both the full 160 specimen sample, and reduced 

80 specimen sample - with 40 of each bone type) showed significantly higher mean 

distance and distance variance (Table 4). That is, results indicate what might be expected 
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intuitively – that there is greater shape diversity in samples containing two kinds of bones 

than samples containing one kind of bone. Plotting principal component scores reveals 

obvious taxonomic and phylogenetic clustering (Fig. 12).  

Comparing phylogenetic signal shows consistently higher estimates of Pagel’s 

lambda in principal component scores of the calcaneus dataset for PCs 1-3 as calculated 

from both the separate and combined datasets (Table 5). The distance-from-combined-

sample-mean dataset (“mix MD” in Table 5) for the astragalus had a value of lambda that 

was higher and more similar to lambda values of the calcaneus datasets. Interestingly, 

while there was no correlation between PC1 of the astragalus dataset and that of the 

calcaneus dataset from the separate analyses, those variables from the combined analyses 

were significantly correlated (Table 6). 

 

Discussion 

Comparisons with conventional 3DGM.— We found the degree of similarity between 

auto3dgm based analyses and those performed on the same sample by Gladman et al. 

(2013) to be surprising. Compared to our analysis using 1,024 automatically determined 

points, the carefully selected 27 landmarks used by Gladman et al. (2013) showed similar 

loadings of shape variance on its Principal Component (PC) axes, similar variance 

breakdown on the first several PCs, and even a strong correlation between some of the 

principal component scores (Table 3). The traditional landmark analysis consolidated 

slightly more variance in its first 4 PCs, though the differences are more pronounced on 

PCs 3 and 4. Because there are more PCs for the automated analyses than for the manual 
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one (two orders of magnitude more), it makes sense that the automated method should 

have a steeper drop-off.  

Our automated approach appears more sensitive to errors caused by noise in the 

surface mesh. This intuitively makes sense and is supported by consideration of some of 

the clustering “errors” and/or differences between the automated and manual methods. 

The relatively poor sorting of platyrrhines, hominoids, and cercopithecoids by our 

automated analysis can be attributed to cases that do not represent mean values, but are 

the only exemplars of their genus. In particular, the vast majority of catarrhine species in 

our sample are represented by single specimens, whereas most of our platyrrhines and 

strepsirrhines are represented by at least two individuals. A single Colobus (AMNH 

27711) breaks up an otherwise consistent platyrrhine cluster. Though observation of this 

specimen does not suggest mesh-defects, its lack of any peroneal tubercle projection is 

anomalous when compared to the prominent peroneal tubercles of all other 

cercopithecoids in the sample. The lack of a projecting tubercle may give this bone 

overall length to width proportions that better match the more slender platyrrhines than 

more robust cercopithecoids. Perhaps the use of a single point in the 27 landmark 

analysis to represent the peroneal region reduces the effect of this feature’s variance on 

the pattern of morphological affinities (a feature represented by ~100 points in the 

automated analysis). Similar problems with other specimens likely indicate that having 

multiple specimen samples is more important generally with our automated approach.  

Aside from anomalous individuals, broken specimens and faulty meshes can be 

expected to “fool” the analysis. A likely example of this is Leontopithecus joining a 

parapithecid (DPC 20576) among a cluster otherwise represented by cercopithecoids. 
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This fossil is not well preserved in its distal aspect, which likely accentuates the 

appearance of a strongly sloping lateral border as seen in the callitrichine. It should also 

be noted however, that Gladman et al. (2013) found that among sampled, extant 

platyrrhines, Leontopithecus has the strongest morphological affinities to cercopithecoids. 

Both our auto3dgm analyses and those of Gladman et al. (2013) suggest morphological 

affinities uniting Fayum fossil parapithecids with cercopithecoids. 

Comparisons of morphological diversity among parts (mixed bone analysis).— Our 

analyses revealed that the astragalus and calcaneus reflect almost identical amounts of 

shape variation (similar “disparity” as measured with 1,024 evenly distributed points and 

using either the raw distance matrix, or ordinations based on it). This appears to be a 

meaningful result since the mixed bone samples (which we believe should express greater 

shape variation) do, indeed, exhibit significantly greater average distances between 

shapes.  

Interestingly, the phylogenetic signal for a given bone-type was minimally affected (if 

at all) by running GPA and PCA on a mixed bone sample (Table 5). Despite similar 

overall variance by almost all measures (Table 4), the calcaneus seems to have developed 

a stronger phylogenetic signal than the astragalus (Table 5). This suggests that change in 

calcaneus has approximated a Brownian motion model along the branches of the primate 

phylogenetic tree more so than the astragalus. This difference in mode may be explained 

functionally by noting that the calcaneus comes into (almost) direct contact with the 

environment (through the skin, etc.) as the heel, and helps comprise a load arm / lever 

arm pair that experiences functional demands for leaping and other forms of locomotion 

(Boyer et al., 2013). In contrast, the astragalus is almost completely isolated with no part 
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that touches the ground, and no attaching muscles. Therefore, the astragalus may often be 

insulated from subtle changes in functional demands and be more likely to experience 

periods of stasis, whereas the calcaneus probably responds more faithfully to small 

changes in mechanical environment.  

The astragalus has long been noted for its high valence in reflecting systematic 

relationships, while the calcaneus appears less useful. At first pass, this observation 

seems contradicted by our results. However, if the astragalus has experienced stasis more 

generally than the calcaneus and developed its comparable morphological variance 

through more punctuated changes, then the resulting variance may be more clearly 

associated with more inclusive taxonomic groups (like strepsirrhines, tarsiers, 

platyrrhines, cercopithecoids, and hominoids) than with species-level differences.  

Biological Significance of Automated Pseudolandmarks.— The most obvious 

difference between pseudolandmarks of our method and traditional landmarks is that 

points associated with a particular feature (e.g., peroneal tubercle) or an articular surface 

on one bone, may not be located on those features in another bone. This may rub some 

morphologists the wrong way if they feel that they know that the peroneal tubercle is 

homologous between two taxa, but the algorithm does not bear this out.  

There are several points to be made here. First, as reviewed by MacLeod (2001), 

Owen’s (1846) original definition considered homology as pertaining to “organs” (or we 

could say “whole bones” here) but did not define mappings of sub-regions therein. In a 

strict sense, the concept of homology does not apply to features of organs. 

Second, the essence of Darwinian homology is that features in different taxa are 

biologically equivalent if they can be traced to the same feature in a common ancestor 



	
   40	
  

through the process of “descent with modification.” This is reflected in a more recent 

definition stating that homology is a “continuity of information” (Van Valen, 1982). 

Given that the ultimate arbiter of homology hypotheses is the pattern of transformations 

that occurred in evolution, it is rare that they can ever be verified.  

Third, the critics of the adaptationist programme (Gould and Lewontin, 1979) warn us 

to beware of “spandrels.” One can ask whether the feature of interest exists by genetic 

design or by developmental context.  If the peroneal tubercle “exists” as a genetically 

specified bump on the side of the calcaneus (in the sense that there are gene products that 

cause the formation of this bump, and variation in the position or size of the tubercle can 

be explained by these gene products being expressed at different positions, at different 

concentrations, and/or for different durations along the shaft of the calcaneus), then it 

follows that this “bump” should be marked with a landmark of the same identity on any 

bone regardless of where topologically it occurs.  However, it seems equally likely that 

the form of the bony peroneal tubercle is a mechanical and re-modeling consequence of 

the paths of the peroneal tendons and where the retinacular ligaments attach. In this 

alternative scenario, representing the position of this bump by the same “point” 

regardless of its position on the calcaneus seems misrepresentative. The truth is that the 

genetic influences and developmental homologies for most features are not known. An 

informative test of these alternatives (although cruel) would be to remove the tendons at 

an early stage of development and observe whether and where a peroneal tubercle 

developed. Even if it were to become known that peroneal tubercle development occurred 

independent of attaching ligaments and tendons, and the forces they exert, this would 

only imply evolutionary homology if we assume parsimony in evolution (or Hennig’s 
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auxiliary principle) which some researchers are willing to do, but others are not. This also 

comes down to whether type I or type II landmarks are preferred when the respective 

criteria suggest different correspondence patterns for a given anatomical region.  

Finally, in this particular example, there is no widespread agreement on the 

evolutionary homology of the peroneal tubercle among primates (Decker and Szalay, 

1974). Variation in features that are plastic and can be modified during life (such as 

ligament attachment points and articular surface areas and boundary shapes) may be 

explained by ontogenetic causes. For instance, variation in the development of certain 

astragalar facets in humans has been explained by different postural tendencies among 

populations (Barnett, 1954). If we use the distal boundary of the tibial facet as a 

landmark, this feature point may extend all the way down the astragalar neck in some 

people, or not approach it at all in others. This would be useful for quantifying variation 

due to postural differences among humans, but probably not for distinguishing the shape 

of a human astragalus from a chimpanzee astragalus. 

Another argument for adding the use of pseudolandmarks to the morphologist’s 

toolkit is the fact that the research community already accepts similar approaches to 

shape comparison including Fourier analysis (Rohlf and Archie, 1984), eigenshape 

analysis (MacLeod, 1999), and eigensurface analysis (Polly and MacLeod, 2008). These 

methods retain no fidelity to specific landmark-like features. The most significant 

conceptual difference between our approach and eigensurface analysis is that the 

anatomical axes must be manually set in the latter. A more practical difference is that 

eigensurface is restricted to “relief-type” or “disc-type” surfaces, whereas auto3dgm can 

be applied to either disc-type or fully 3D surfaces.  
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The question of whether points or regions on different instances of the same bone are 

“equivalent” is ultimately a question about transformational homology. Our method 

provides an “operational homology” (= topological correspondence). The minimum 

spanning tree used to link forms can be taken as a hypothesis of transformational 

homology to be tested. The best answer to whether certain “point features” are equivalent 

must be answered by assessing whether treating them as such results in phenetic patterns 

that correlate with independent datasets on phylogenetic relationships or functional 

capacity. This means that if the utility of automated methods is going to increase, then 

automated correspondence determinations that are more sensitive to feature points (type 

II landmarks) must also be developed. This requires algorithms based on “non-area 

preserving maps”. The original work of Boyer et al. (2011) presents such a method but 

lacks applicability to “full 3D” shapes and does not provide a means for inducing 

transitivity of comparisons. Different patterns of transformational homology will be 

implied by different phylogenetic hypotheses, which could be evaluated according to 

different optimization criteria. 

Too many variables, not enough specimens?– A major challenge in statistical 

modeling as applied to molecular biology (Golub et al., 1999), genetics (Patterson et al., 

2006), image analysis (Roweis and Saul, 2000), and text analysis (Blei et al., 2003) has 

been the large P, small N setting (Poggio and Smale, 2003; West, 2003) where the 

number of variables is typically much larger than the number of samples. In statistics, the 

difficulty of modeling data as the number of variables increases and exceeds the number 

of observations is often called “the curse of dimensionality”, a phrase coined by Bellman 

with respect to optimization problems (Bellman, 1984). However, many of the great 
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advances in the last ten years in statistics, machine learning, and applied mathematics are 

related to the observation that the relevant dimension of the data is not the number of 

variables, but the number of independent variables (the intrinsic dimension) (Donoho, 

2000). For 1,024 landmarks spread on a sample of 80-160 objects, the intrinsic 

dimensionality will be much lower than the number of landmarks. If the perspective 

promoted by statisticians dealing with large P, small N problems is correct, then the 

problem of over-determination can be avoided by limiting the number of independent 

variables generated by data reduction techniques from a landmark dataset with hundreds 

or thousands of points. The idea that seemingly high-dimensional data have few degrees 

of freedom, or low intrinsic dimensionality, is central to the methodologies developed in 

this paper.  

As a matter of precedent, this philosophy is implicitly acknowledged in papers that 

use large numbers of evenly (or “optimally”) spread semi-landmarks as well as in 

eigenshape analysis (Polly, 2008; Polly and MacLeod, 2008; Sievwright and MacLeod, 

2012). Harcourt-Smith et al. (2008) provides a pertinent example, in which a total of nine 

user-defined landmarks were used to generate 361 semilandmark points on the talo-tibial 

facets of a sample with 54 specimens representing three species. Another example is 

Sievright and MacLeod (2012). These authors used 62 points to represent the dorsal 

surface of the proximal humerus in a sample of 50 falconiform specimens. They 

projected their coordinates into tangent space and used principal component analysis to 

generate projection scores. These mutually orthogonal (independent) projection scores 

were then used to run a Canonical Variates Analysis (=DFA). They limited the number of 

principal components used in their analysis to 21 (because they argued that this number 
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represented 95% of the total variation in the dataset and was much less than their n=50). 

These authors recognize the importance of the number of independent variables, but do 

not discuss the statistical ramifications of the number of original, yet correlated, 

variables.  

 

Summary and Conclusion 

Greater automation and standardization for morphological studies are needed if 

morphology is to survive as a branch of phenomics with relevance comparable to 

genomics. The most important level at which such automation must occur is in 

determining biological/geometric correspondence between shapes. Past attempts to 

automate such determinations have suffered from the prospect that computations 

involved were too time intensive (as well as philosophical arguments against the idea of 

such an approach). Dimension reduction techniques such as working from photographs 

and outlines have been applied to circumvent this issue, but an observer is needed to 

orient objects before such application, slightly defeating the purpose of automation. 

Greater computing power and techniques for simplifying the search for alignment and 

correspondence mapping between 3D digital models are applied here and an R package 

for implementing this method has been created. 

Our analyses show a surprising and reassuring degree of similarity between 

quantifications based on user-defined landmarks and our auto3dgm approach. Although 

human interaction must occur at several stages of the analyses to verify that erroneous 

alignments have not been generated, this approach still represents a step beyond any 

automation procedures yet applied, because 1) no qualitative decisions about the 
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geometric equivalence of point features are required and 2) protocols for generating 

alignments and pseudolandmark datasets lack observer error, since the final procedure for 

the exact result of the algorithm can be described via the numerical parameter input to the 

model. Very little familiarity with anatomical terminology or features is required. Only a 

basic ability to visually compare shapes is necessary in auto3dgm in order to verify the 

absence of misalignments. This method has the potential for adoption by geneticists, 

molecular biologists, and biomedical engineers who may feel uncomfortable about their 

ability to take measurements with repeated accuracy or with biological significance to 

their questions of interest.  

One of the most exciting capabilities provided by this algorithm is the ability to 

compare variance magnitude and patterns for different skeletal elements. Our initial 

experiments with this approach show that two articulating bones of the skeleton have 

identical levels of morphological diversity with strong covariance, which makes sense 

developmentally, but the calcaneus has a consistently stronger phylogenetic signal in its 

variance patterns than the astragalus.  

Future work will explore different types of correspondence algorithms with an 

emphasis on constructing algorithms that can efficiently determine non-area preserving 

maps (those that mimic user-defined type II landmarks of 3DGM more closely). 

Furthermore, we intend to compare variance levels among different regions of the 

skeleton with the expectation that patterns of covariance and variance magnitudes will 

differ more between bones that are far apart from each other on the skeleton and are more 

likely to have different developmental and historical natural-selective contexts. We 

recognize that these quantities are still dependent on the sample composition, the 
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parameters of any particular run of auto3dgm, and any ordination methods that are used. 

Nonetheless, we feel that the patterns will be informative for evolutionary questions 

including those dealing with disparity because the quantification of inter-bone shape 

distance is objective and more comprehensive auto3dgm, and we have articulated a 

rationale geometric basis for comparing variance between groups of non-homologous 

elements. 
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 Tables 

Table 1. Taxonomic samples for this study 
Extant Set 1 Set 2 Set 3 Set 4  Fossil Set 1 Set 2 Set 3 
Taxon n Calc. n Ast. n Phal. n Ast.  Taxon Calc. Cat. # Ast. Cat. # Phal. Cat. # 
Avahi laniger 1 1 -- --  Cantius abditus USGS 6783 USG 21832 -- 
Microcebus murinus -- -- 1 1  Cantius sp. USGS 6774 -- -- 
Cheirogaleus major 1 1 2 --  Cantius trigonodus AMNH 16852 -- -- 
Mirza coquereli -- -- 1 --  Cantius trigonodus USGS 21829 -- -- 
Daubentonia madagascariensis 1 1 -- 1  Cebupithecia sarmientoi UCMP 38762* UCMP 38762* -- 
Eulemur fulvus 2 2 1 1  Marcgodinotius indicus GU 709 GU 748 -- 
Hapalemur griseus 3 3 1 1  Mesopithecus pentelici* MNHN PIK-266 -- -- 
Indri indri 2 2 1 --  Neosaimiri fieldsi* IGM-KU 89202 IGM-KU -- 
Lemur catta 3 3 1 1  Neosaimiri fieldsi* IGM-KU 89203 -- -- 
Lepilemur mustelinus 3 3 -- 1  Notharctus sp. AMNH 55061 AMNH 11474 -- 
Propithecus verreauxi 2 2 1 --  Notharctus tenebrosus AMNH 11474 AMNH 129382 AMNH 143612-3 
Propithecus diadema -- -- 1 --  Omomyid AMNH 29164 UM 38321 -- 
Varecia variegata 1 1 1 --  Omomys sp. UM 98604 UM 98648 -- 
Galago senegalensis -- -- 2 --  Oreopithecus bambolii NMB 37* -- -- 
Otolemur crassicaudatus -- -- 2 --  Ourayia uintensis SDNM 60933 -- -- 
Loris tardigradus -- -- -- 1  Parapithecid DPC 15679 DPC 5027 -- 
Nycticebus coucang -- -- -- 1  Parapithecid DPC 20576 DPC 5416A -- 
Perodicticus potto -- -- -- 1  Parapithecid DPC 2381 DPC 1001 -- 
Alouatta seniculus, sp. 4 3 -- 1  Parapithecid DPC 8810 -- -- 
Aotus azarae, infulatus, sp. 3 3 2 1  Proteopithecus sylviae DPC 24776 DPC 22844 -- 
Ateles paniscus, sp. 3 3 -- 1  Smilodectes gracilis AMNH 131763 -- -- 
Brachyteles arachnoides 1 1 -- --  Smilodectes gracilis AMNH 131774 -- -- 
Cacajao calvus 2 2 -- 1  Teihardina belgica IRSNB16786-03 IRSNB16786-01 -- 
Callicebus donaco., moloch 3 3 -- 1  Washakius insignis AMNH 88824 UM 99704 -- 
Callimico goeldi 2 2 -- --  Carpolestes simpsoni -- -- UM 101963 (x4) 
Callithrix jacchus 2 2 -- 1  Ignacius clarksforkensis -- -- UM 82606 
Cebuella pygmaea 2 2 -- --  Plesiadapis churchilli -- -- SMM P77.33.517 
Cebus apella, sp. 2 2 -- 1  Nannodectes intermedius -- -- USNM 442229 
Chiropotes satanus, sp. 3 3 -- --  Incertae sedis -- -- 6 from UCMP 
Leontopithecus rosalia 2 2 -- --  TOTAL fossil N: 24 14 14 
Pithecia monachus, pithecia 2 2 -- 1  	
   	
   	
   	
  
Saguinus midas, mystax, sp. 4 3 -- --  	
   	
   	
   	
  
Saimiri boliviensis, sciureus, sp. 5 3 -- --  	
   	
   	
   	
  
Cercopithecus sp. 2 -- -- --      
Chlorocebus aethiops, cynosuros 2 1 -- --      
Colobus geureza 1 0 -- --      
Erythrocebus patas 1 0 -- --      
Lophocebus albigena 1 0 -- --      
Macaca nigra, tonkeana 2 2 -- --      
Mandrillus sphinx 1 0 -- --      
Nasalis larvatus 1 1 -- --      
Papio hamadryas 1 -- -- --      
Piliocolobus badius 2 -- -- --      
Pygathrix nemaeus 1 -- -- --      
Theropitheucs gelada 1 -- -- --      
Trachypithecus obscurus 1 1 -- --      
Gorilla sp. 1 1 -- --      
Hylobates lar 1 1 -- --      
Pan troglodytes 2 2 -- --      
Pongo pygmaeus 1 1 -- --      
Symphalangus syndactylus 1 1 -- --      
Tarsius pumilus -- -- 2 --      
Tarsius bancanus -- -- 2 1      
Tarsius spectrum -- -- 2 1      
Tarsius syrichta -- -- -- 1      
Cynocephalus volans -- -- -- 2      
Galeopterus variegatus -- -- -- 1      
Ptilocercus lowii -- -- -- 2      
Tupaia glis -- -- -- 2      
Lepus sp. -- -- -- 2      
Sylvilagus sp. -- -- -- 1      
Ochotona princeps -- -- -- 1      
Erethizon sp. -- -- -- 1      
Coendou prehensilis -- -- -- 1      
Marmota sp. -- -- -- 1      
Sciurus sp. -- -- -- 1      
Aplodontia rufa -- -- -- 1      
Allactaga major -- -- -- 1      
Hemiechinus auritus -- -- 4 1      
Erinaceus europaeus -- -- 3 1      
Erinaceus roumanicus -- -- 4 --      
Chrysochloris asiatica -- -- -- 1      
Crocidura olivieri -- -- -- 1      
Desmana moschata -- -- -- 1      
Solenodon paradoxus -- -- -- 1      
Potos flavus -- -- -- 1      
Arctictis binturong -- -- -- 1      
Nasua narica -- -- -- 1      
Petrodromus tetradactylus -- -- -- 1      
Tenrec ecaudatus -- -- -- 1      
Setifer setosus -- -- -- 1      
Hemicentetes semispinosus -- -- -- 1      
Echinops telfairi -- -- -- 1      
Potamogale velox -- -- -- 1      
TOTAL extant N: 82 66 34 52      
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Table 2. Comparison between traditional 3DGM of 106 calcanei sample and FAA of this 
study. 

Comparison point 27 landmark—Manual analysis 1,024 landmark—Automated 
PC 1 % variance 35.9 34.7 
PC 2 % variance 13.6 13.6 
PC 3 % variance 9.5 6.7 
PC 4 % variance 6.7 4.6 
Sum PC 1-4 64.9 59.6 
PC 1 loadings 

 

Overall width/length proportions 
with emphasis on distal elongation. 

Overall width/length proportions 
with emphasis on distal elongation. 

PC 2 loadings 

 

Position of lateral peak of the 
peroneal tubercle relative to both 
ectal and cuboid facets. 

1) Dorsoplantar elevation of the 
ectal facet’s distal margin relative to 
the calcaneus body; 2) 
distinctiveness, but not position, of 
peroneal tubercle. 

PC 3 loadings 

 

1) Proximal segment elongation, 
shape/orientation of ectal facet, 2) 
dorsal projection of dorsal heel. 

Tradeoff between a prominent 
proximal plantar heel process and an 
accentuated angulation at the distal 
plantar tubercle. 

PC 4 loadings 

 

Ectal facet position, curvature, and 
orientation relative to long axis of 
the calcaneus. 

Proximal elongation and dorsal 
projection of dorsal heel. 

 

Table 3. Correlation (r) and Probability (p) between manual and automated PCs. 

 Linear correlations (r)   
Manual Automated Pseudolandmarks  
3DGM PC-1 PC-2 PC-3 PC-4 

PC-1 -0.96 -0.16 0.09 0.07 
PC-2 0.11 -0.50 0.34 -0.28 
PC-3 0.15 -0.64 0.03 0.18 
PC-4 -0.01 0.06 -0.38 -0.32 

     
 Probability of no correlation (P)  

Manual Automated Pseudolandmarks  
3DGM PC-1 PC-2 PC-3 PC-4 

PC-1 <0.0001 ns ns ns 
PC-2 ns <0.0001 0.0004 0.0042 
PC-3 ns <0.0001 ns ns 
PC-4 ns ns <0.0001 0.0008 
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Table 4. Distance matrices from mixed bone analyses. “Dev. From Mean” represent the 
distance between each object and the mean object. Thus the number of distances is the 
same as the sample size. The t-test is done on this sample of deviations from the mean. 
“Mix” represents the results of analysis of 40 astragali with 40 taxon-matched calcanei. 

Full Distance Matrix  
n=3,120 Calc. Ast. mix 
mean 0.18 0.19 0.29 
max 0.40 0.37 0.54 
min 0.05 0.06 0.05 
sd 0.06 0.05 0.11 
Dev. from Mean   
n=80 Calc. Ast. mix 
Mean dev. 0.13 0.13 0.21 
max 0.25 0.27 0.31 
min 0.07 0.07 0.16 
sd 0.04 0.03 0.03 
t-test (on Dev.) df t P 
Ast. vs. Calc. 158 0.50 0.62 
Ast. vs. Mix 158 15.16 <0.0001 
Calc. vs. Mix 158 14.81 <0.0001 
 



	
   61	
  

Table 5. Phylogenetic signal in astragalus and calcaneus shape data based on automated 
analysis of 1,024 pseudolandmarks. “Mix” preceding the variable name indicates that the 
data were the result of the sequential GPA and PCA on a “mixed” sample of 160 astragali 
and calcanei. “MD” stands for mean distance and values represent the continuous 
Procrustes distance of each specimen from the mean shape. P(0/1) stands for the 
probability of lambda being zero or one. 

 
Phylogenetic Signal   
Astragalus    Calcaneus    
Variable lambda(CI) P(0) P(1) Variable lambda(CI) P(0) P(1) 
mix PC1 0.884 (0.578, NA) <0.0001 0.13 mix PC1 1.0 (0.924, NA) <0.0001 1 
mix PC2 0.861 (0.623, NA) <0.0001 0.06 mix PC2 1.0 (0.919, NA) <0.0001 1 
mix PC3 0.871 (0.638, NA) <0.0001 0.06 mix PC3 1.0 (0.954, NA) <0.0001 1 
mix MD 1.0 (0.855, NA) <0.0001 1 mix MD 1.0 (0.949, NA) <0.0001 1 
sep PC1 0.862 (0.641, NA) <0.0001 0.05 sep PC1 1.0 (0.945, NA) <0.0001 1 
sep PC2 0.995 (0.856, NA) <0.0001 0.89 sep PC2 1.0 (0.942, NA) <0.0001 1 
sep PC3 0.846 (0.339, 0.985) 0.003 0.01 sep PC3 1.0 (0.845, NA) <0.0001 1 
sep MD 0.990 (0.769, NA) <0.0001 0.91 sep MD 1.0 (0.929, NA) <0.0001 1 
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Table 6A. Correlations between PC scores of astragalus and calcaneus, and correlations 
between PC scores of mixed and separate bone analyses. Linear correlation (r) values in 
boxes on the left, (P) values in boxes on the right. 
 
Between Bone Correlations (comparisons within separate & mixed 
analyses)    
sep. ast.     sep. ast.    
calc. 1 2 3 MD  calc. 1 2 3 MD 

1 0.86 -0.17 -0.13 --  1 <0.0001 ns ns -- 

2 -0.08 0.86 0.05 --  2 ns 
<0.000

1 ns -- 
3 -0.16 -0.02 0.02 --  3 ns ns ns -- 

MD -- -- -- 0.57  MD -- -- -- 
<0.000

1 
           
mix. ast.     mix. ast.    
calc. 1 2 3 MD  calc. 1 2 3 MD 

1 0.68 0.86 0.57 --  1 <0.0001 
<0.000

1 
<0.000

1 -- 

2 0.40 0.84 0.76 --  2 0.007 
<0.000

1 
<0.000

1 -- 

3 -0.25 -0.76 -0.80 --  3 ns 
<0.000

1 
<0.000

1 -- 
MD -- -- -- -0.25  MD -- -- -- ns 

           
Within Bone Correlations (comparisons between separate & mixed 
analyses)    

calc. mix.     calc. mix.    
sep. 1 2 3 MD  sep. 1 2 3 MD 

1 -0.93 -0.98 0.93 --  1 <0.0001 
<0.000

1 
<0.000

1 -- 
2 0.43 -0.01 0.23 --  2 0.004 ns ns -- 
3 -0.08 -0.01 -0.05 --  3 ns ns ns -- 

MD -- -- -- 0.45  MD -- -- -- 0.003 
           

ast. mix.     ast. mix.    
sep. 1 2 3 MD  sep. 1 2 3 MD 

1 -0.57 -0.98 -0.90 --  1 <0.0001 
<0.000

1 
<0.000

1 -- 
2 0.80 0.26 -0.29 --  2 <0.0001 ns ns -- 
3 -0.10 0.07 -0.11 --  3 ns ns ns -- 

MD -- -- -- 0.95  MD -- -- -- 
<0.000

1 
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Table 6B. Phylogenetically informed correlations between astragalus and calcaneus 
variables that resulted from sequential GPA followed by PCA on 1,024 pseudolandmarks 
per bone. See Table 5A for explanation of variable names. 

PGLS correlations      
test lambda(CI) P(0) P(1) slope r square P 
sep PC1 (ast. vs. calc.) 1.0 (0.946, NA) <0.0001 1 0.28 0.073 0.05 
mix PC1 (ast. vs. calc.) 1.0 (0.924, NA) <0.0001 1 0.84 0.204 0.0002 
sep MD (ast. vs. calc.) 1.0 (0.925, NA) <0.0001 1 0.1 0.057 0.79 
mix MD (ast. vs. calc.) 1.0 (0.952, NA) <0.0001 1 -0.36 0.074 0.05 
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Figures/Captions 

Figure 1. Bones of the study. This study utilizes scan datasets of three different types of 
bones. These datasets are chosen to challenge the automatic alignment algorithm we 
present with a range of geometric properties. The astragalus and calcaneus datasets are 
samples that represent geometrically complex bones with seemingly modest sample 
variance, while the distal phalanges are geometric more simple bones with apparently 
large sample variance. Analyses include one on a sample of 106 calcanei that is 
compared to a traditional 3DGM analysis using 27 landmarks by Gladman et al. (2013); 
one on a sample of 80 calcanei and 80 taxon-matched astragali in a single “mixed-bone” 
analysis; and one on a sample of 49 distal phalanges (Table 1). 
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Figure 2. Example of bones in an alignment file. One of the outputs of the fully 
automated alignment algorithm is a 3D mesh file that shows all the specimens of the 
sample aligned. This allows the researcher to quickly survey the results to determine if 
he/she should proceed with shape analyses based on the implied correspondence. 
Sometimes one or more bones may be misaligned. If this results the researcher will catch 
it at this stage: we present several strategies for correcting such misalignments. The 
“numbering direction indicators” are mesh objects that show where the #1 bone in the 
spreadsheet is located. The arrow points down column #1, and numbering proceeds down 
rows. This allows the researcher to match bones in the alignment file with a spreadsheet 
containing any metadata on the surface files (like taxonomic information). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   66	
  

Figure 3. Multi-Dimensional Scaling (MDS) & Minimum Spanning Tree (MST) 
embedding file. This second output is of the same file type as that in Figure 2. It is 
however, less essential, because it is not useful for visualizing alignments and the data it 
presents can be re-calculated by the user later. The file simply displays the bones of the 
sample with their centroids embedded in the coordinate space of an MDS analysis result 
that is run on the pairwise distance matrix as determined via the MST. The MST is also 
shown. The point of this file is to give researchers a quick look at the clustering of their 
specimens. 
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Figure 4. Down-sampling meshes prior to analysis. The algorithm is run on point 
clouds represented by a standard number of points specified by the researcher. These 
points are chosen by randomly picking a point on the surface, and then picking another 
point that is farthest from the first point, then by picking a third point whose position on 
the surface maximizes the sum distance between it and the two existing points, and so on 
until the specified number of points is achieved. 
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Figure 5. Principal alignments to improve Iterative Closest Points (ICP) searches. 
The best alignment between two bones is almost impossible to find using an ICP 
approach without any good initial guesses. The problem with supplying an initial guess is 
that usually this means user intervention is required. Our algorithm supplies at least eight 
initial guesses withoutuser intervention. It does this by computing the first three principal 
axes of variance and uses these axes as starting points for ICP. The principal axes along 
which the smallest continuous Procrustes distance between two shapes is found is almost 
always correct if the shapes are similar. This is a computationally rapid way of solving a 
complex problem. The algorithm performs better on samples with many incrementally 
intermediate shapes (see text and Fig. 4). Red lines on calcaneal surfaces represent 
principal axes of point variance. Shapes on left have yet to be aligned, while shapes on 
the right have been aligned so that their principal axes match. 
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Figure 6. Method for successfully aligning disparate shapes. A, the result of applying 
our version of ICP to two similar shapes. B, the incorrect result that emerges when 
applying our ICP directly to two dis-similar shapes. In the first stage of the analysis, a 
pairwise distance matrix is calculated using “direct-matches” (even potentially incorrect 
ones as in B) between all shapes. That distance matrix is used to compute a minimum 
spanning tree. Because the minimum spanning tree connects only the most similar 
shapes, these connected pairs almost always represent correct alignments as in “A.” C. 
These connections therefore define a path of intermediates that can be used to figure out 
the correct alignment between different shapes. D, The MST route is shown graphically. 
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Figure 7. Schematic of alignFix protocol. A) Visual inspection of initial alignment 
reveals several specimens are misaligned. B) Minimum spanning tree shows misaligned 
specimens (shown in red) can be found on two branches. C) Minimum spanning tree is 
broken into three components representing the base tree (in which all alignments are 
good), and Branches A and B (the misaligned specimens). D) Unsupervised alignment 
protocol is performed on originally unconnected branches A and B to determine if global 
alignment exists for those specimens when base tree specimens are excluded from 
consideration. Here, we show a successful global alignment. If no such alignment exists, 
then Branches A and B should be treated separately as if they had been a set connected to 
each other, as each was to the base tree. E) All misaligned specimens are compared to all 
specimens in the Base Tree to find the appropriate attachment point (i.e., a pair with a 
correct alignment). Several example alignments from this exhaustive process are shown 
here. Pairwise comparisons are visually inspected by the user to find an acceptable 
alignment with the lowest Procrustes distance between the two specimens. F) The 
designated pair serves as the connection (dotted line) for Branch A+B to the Base Tree. 
G) Recomputed global alignment using user determined tree in E reveals all specimens to 
now align correctly. 
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Figure 8. Shape space of our analysis and comparison to a traditional 3DGM 
analysis. A, PCA plot of principal component scores 1 and 3 for data from Gladman et 
al. (2013) based on 27 landmarks of the calcaneus in a sample of 106 bones. B, PCA plot 
of principal component scores 1 and 3 for the same sample, but as represented by 1,024 
pseudolandmark points generated by the algorithm presented here. Both datasets, 
including our automated output, and that from Gladman et al. (2013) were analyzed with 
morphologika2.5. One of the benefits of the output of our algorithm is that it can be 
analyzed as if it were observer-collected data with traditional statistical software.  
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Figure 9. Neighbor Joining tree. To explore phenetic affinites implied by 
pseudolandmarks in the calcaneal dataset we averaged coordinate data from individual 
specimens into species means as described in the text and then performed three types of 
clustering algorithms, just as was also done by Gladman et al. (2013) for a 27 landmark 
traditional dataset. The neighbor-joining tree requires specification of a root to which 
nearest neighbors are attached. Fossils were not averaged. Therefore stars and specimen 
numbers represent individual fossils. These analyses were carried out in PAST (Hammer 
et al. 2001; 2006). 
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Figure 10. UPGMA tree. To explore phenetic affinities implied by pseudolandmarks in  
the calcaneal dataset we averaged coordinate data from individual specimens into species 
means as described in the text and then performed three types of clustering algorithms, 
just as was also done by Gladman et al. (2013) for a 27 landmark traditional dataset. 
Fossils were not averaged. Therefore stars and specimen numbers represent individual 
fossils. These analyses were carried out in PAST (Hammer et al. 2001; 2006). 
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Figure 11. Wards tree. To explore phenetic affinities implied by pseudolandmarks in the 
calcaneal dataset we averaged coordinate data from individual specimens into species 
means as described in the text and then performed three types of clustering algorithms, 
just as was also done by Gladman et al. (2013) for a 27 landmark traditional dataset. 
Fossils were not averaged. Therefore stars and specimen numbers represent individual 
fossils. These analyses were carried out in PAST (Hammer et al. 2001; 2006). 
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Figure 12. Mixed bone analyses. A, PCA plot (PC’s 1 and 2) of the mixed bone 
analysis. MST’s were established for each bone type independently using our FAA in the 
way described above with 1,024 pseudolandmark correspondence points for each set. 
Then we exhaustively computed the minimum Procrustes distance between every pair of 
astragalus and calcaneus. We used that pair with smallest distance to connect the 
calcaneal to the astragalar MST and allow the template to extend between two bones. 
Then we were able to run GPA and PCA on the mixed bone analysis. B, PCA plot (PC’s 
1 and 2) for the calcaneus when no astragali are included. C, PCA plot (PC’s 1 and 2) for 
the astragalar dataset when no calcanei are included. The star represents the Fayum 
anthropoid Proteopithecus. Note that the there is good phylogenetic correlation with and 
between bones on the same axes whether the analyses are done on mixed or single bone 
samples. This is demonstrated quantitatively in Tables 6A-B.  
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